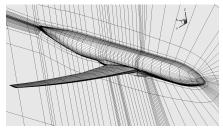

3rd Int. Workshop on High-Order CFD Methods, Kissimmee, Florida, Jan 3-4, 2015 Results for the C3.5 test case with the DLR-PADGE code

Ralf Hartmann


Institute of Aerodynamics and Flow Technology German Aerospace Center

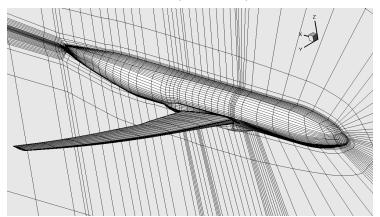
4. Jan. 2015 (Updated: 31st March 2015)

Flow conditions (DPW-5, Case 1):

- \blacktriangleright Mach number: M=0.85
- ▶ Target $C_L = 0.5 (\pm 0.001)$
- Reynolds number: 5×10^6 (based on reference chord $c_{ref} = 275.80 \, inch)$

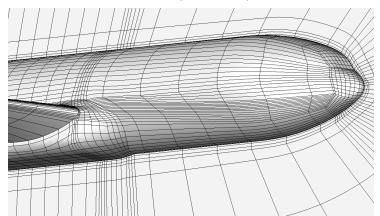
CRM wing/body: initial grid

Additional information:


- ► Moment reference center at $(x, y, z)_{ref} = (1325.90, 468.75, 177.95)$ in [inch]
- Reference area (half model): $A_{ref} = 297360 \, (inch)^2$
- Fully turbulent flow, no transition
- Steady-state RANS
- Free air farfield boundary, no modeling of support structures or wind tunnel walls

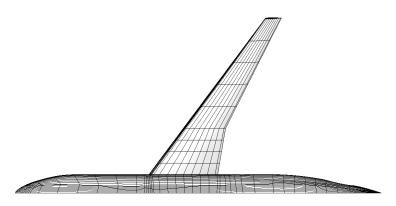
Turbulent flow at M=0.85, $Re=5\times10^6$ with $C_L=0.5$

Curved hexahedral mesh (cubic lines) from the workshop homepage


crm_q3.msh with 79505 elements (initial mesh)

Turbulent flow at M=0.85, $Re=5\times10^6$ with $C_L=0.5$

Curved hexahedral mesh (cubic lines) from the workshop homepage


crm_q3.msh with 79505 elements (initial mesh)

Turbulent flow at $M=0.85,~Re=5\times10^6$ with $C_L=0.5$

Curved hexahedral mesh (cubic lines) from the workshop homepage

crm_q3.msh with 79505 elements (initial mesh)

Turbulent flow at M=0.85, $Re=5\times10^6$ with $C_L=0.5$

Methods in the DLR-PADGE code used for this test case

Discontinuous Galerkin discretization of the RANS and Wilcox k- ω equations

- ▶ Legendre polynomial basis functions of polynomial degree 1.
- ▶ Roe flux with Harten entropy fix (fix fraction=0.2)
- BR2 discretization of viscous terms
- Characteristic farfield boundary conditions
- Adiabatic wall boundary condition

Flow solver:

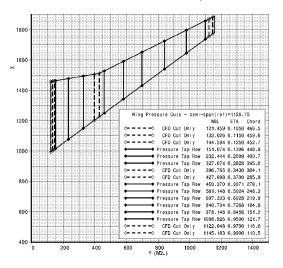
- Backward Euler (fully implicit solver) with ILU preconditioned GMRes
- ▶ Damping of updates to ensure that pressure and density do not decrease more than 20% in each iteration step

Convergence criterion: Reduction of the (vector-) L^2 -norm of the residual vector to 10^{-12} relative to freestream conditions

Turbulent flow at M=0.85, $Re=5\times10^6$ with $C_L=0.5\,(\pm0.001)$

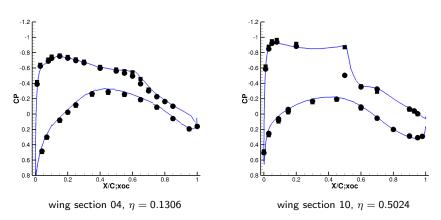
Residual-based mesh refinement

ref.step	DoFs/eqn	C_L	C_D	C_M	α	work units
initial	318020	0.5005	0.03428	-0.1180	2.179	19936
1	471184	0.5004	0.02963	-0.1076	2.244	42702
2	775068	0.5003	0.02872	-0.1026	2.296	85154
3	1314912	0.5001	0.02788	-0.1019	2.310	156206
4	2375948	0.5001	0.02728	-0.1005	2.326	331851
5	4492916	0.5000	0.02699	-0.0999	2.336	629813
6	8705556	0.5000	0.02650	-0.0996	2.341	1105033

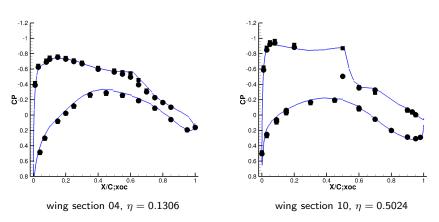

Turbulent flow at M=0.85, $Re=5\times 10^6$ with $C_L=0.5\,(\pm 0.001)$

Adjoint-based mesh refinement for the lift coefficient

ref.step	DoFs/eqn	C_L	C_D	C_{M}	α	work units
initial	318020	0.5005	0.03428	-0.1180	2.179	19936
1	517120	0.5003	0.02781	-0.1080	2.251	63854
2	995104	0.5000	0.02561	-0.1014	2.315	128003
3	1953148	0.5000	0.02485	-0.1022	2.308	233742
4	3931028	0.5001	0.02472	-0.1033	2.297	453941
5	8138244	0.5001	0.02486	-0.1035	2.295	857034


work units include the flow as well as the adjoint solutions involved.

Following slides: c_p on wing section 04 $\eta = 0.1306$ wing section 10 $\eta = 0.5024$


Turbulent flow at M=0.85, $Re=5\times10^6$ with $C_L=0.5$

Solution for $\alpha=2.341^{\circ}$ on 6 times residual-based refined mesh with 8.705.556 DoFs/eqn.

Turbulent flow at M=0.85, $Re=5\times10^6$ with $C_L=0.5$

Solution for $\alpha = 2.295^{\circ}$ on 5 times adjoint-based(C_L) refined mesh with 8.138.244 DoFs/eqn.

